• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A dynamic DRR scheduling algorithm for flow level QOS assurances for elastic traffic

      Thumbnail
      View / Download
      764.2 Kb
      Author(s)
      Kurugöl, Sıla
      Advisor
      Akar, Nail
      Date
      2006
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      211
      views
      111
      downloads
      Abstract
      Best effort service, used to transport the Internet traffic today, does not provide any QoS assurances. Intserv, DiffServ and recently proposed Proportional Diff- Serv architectures have been introduced to provide QoS. In these architectures, some applications with more stringent QoS requirement such as real time traffic are prioritized, while elastic flows share the remaining bandwidth. As opposed to the well studied differential treatment of delay and/or loss sensitive traffic to satisfy QoS constraints, our aim is satisfy QoS requirements of elastic traffic at the flow level. We intend to maintain different average rate levels for different classes of elastic traffic. For differential treatment of elastic flows, a dynamic variant of Deficit Round Robin Scheduler (DRR) is used as oppose to a FIFO queue. In this scheduling algorithm, all classes are served in a round robin fashion in proportion to their weights at each round. The main difference of our scheduler from the original DRR scheduler is that, we update the weights, which are called quantums of the scheduler at each round in response to the feedback from the network, which is in terms of the rate of phantom connection sharing capacity fairly with the other flows in the same queue. According to the rate measured in the last time interval, the controller updates the weights in proportion with the bandwidth requirements of each class to satisfy their QoS requirements, while the remaining bandwidth will be used by the best effort traffic. In order to find an optimal policy for the controller a simulation-based learning algorithm is performed using a processor sharing model of TCP, then the resultant policies are applied to a more realistic scenario to solve Dynamic DRR scheduling problem through ns-2 simulations.
      Keywords
      Dynamic Deficit Round Robin Scheduling
      Reinforcement Learning
      QoS
      Elastic Traffic
      Permalink
      http://hdl.handle.net/11693/29884
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy