• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Efficient computation of surface fields excited on an electrically large circular cylinder with an impedance boundary condition

      Thumbnail
      View / Download
      491.3 Kb
      Author(s)
      Alişan, Burak
      Advisor
      Altıntaş, Ayhan
      Date
      2006
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      140
      views
      44
      downloads
      Abstract
      An efficient computation technique is developed for the surface fields excited on an electrically large circular cylinder with an impedance boundary condition (IBC). The study of these surface fields is of practical interest due to its applications in the design and analysis of conformal antennas. Furthermore, it acts as a canonical problem useful toward the development of asymptotic solutions valid for arbitrary smooth convex thin material coated/partially material coated surfaces. In this thesis, an alternative numerical approach is presented for the evaluation of the Fock type integrals which exist in the Uniform Geometrical Theory of Diffraction (UTD) based asymptotic solution for the non-paraxial surface fields excited by a magnetic or an electric source located on the surface of an electrically large circular cylinder with an IBC. This alternative approach is based on performing a numerical integration of the Fock type integrals on a deformed path on which the integrands are non-oscillatory and rapidly decaying. Comparison of this approach with the previously developed study presented by Tokg¨oz (PhD thesis, 2002), which is based on invoking the Cauchy’s residue theorem by finding the pole singularities numerically, reveals that the alternative approach is considerably more efficient. Since paraxial solution is a closed-form solution and very efficient in terms of computational time, there is no need for an alternative approach for the evaluation of the paraxial surface fields.
      Keywords
      Surface fields
      Impedance cylinder
      UTD based Green’s functions
      Fock type integrals
      Permalink
      http://hdl.handle.net/11693/29805
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 655
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy