• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Intrinsic entanglement of photons

      Thumbnail
      View / Download
      251.3 Kb
      Author
      Duru, Alper
      Advisor
      Shumovsky, Alexander S.
      Date
      2006
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      68
      views
      31
      downloads
      Abstract
      Multipole radiation is treated both classically and also quantum mechanically. Dipole atom as a source of radiation is investigated within the Jaynes-Cummings model. Polarization properties of quantum multipole radiation are given. It is shown that multipole photons have all three components of polarization but we can perform a local transformation of radiation frame such that the new z− axis corresponding to linear polarization becomes parallel to the Poynting vector. It is shown that the spin angular momentum and orbital angular momentum have the same operator structure, and in the far zone, they contribute equally to the total angular momentum. Hence in this regime, these two contributions are indistinguishable and they may differ from each other only by spatial dependence in the very vicinity of the source. Another aspect of the behavior in the far zone is that the longitudinal polarization of multipole photons vanish. A variational approach to entanglement which is introduced recently based on analysis of dynamic symmetry of systems and quantum uncertainties, accompanying the measurement of mean value of basic observables is applied to investigate the intrinsic entanglement of electric dipole photons. The basic observables are defined in terms of an orthogonal basis of Lie Algebra, corresponding to the dynamic symmetry group of the system of interest. It is shown that electric dipole photons can carry entanglement with respect to its intrinsic degrees of freedom, namely the spin angular momentum and orbital angular momentum, each of which may be considered as a qubit.
      Keywords
      Quantum Optics,
      Quantum Multipole Radiation
      Spin Angular Momentum
      Orbital Angular Momentum
      Quantum Entanglement
      Permalink
      http://hdl.handle.net/11693/29802
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy