• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Monolithic and hybrid silicon-on-insulator integrated optical devices

      Thumbnail
      View / Download
      5.6 Mb
      Author(s)
      Kiyat, İsa
      Advisor
      Aydınlı, Atilla
      Date
      2005
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      211
      views
      62
      downloads
      Abstract
      Silicon, the basic material of electronics industry is rediscovered nowadays for its potential use in photonics and integrated optics. The research activity in silicon integrated optics have been speeding up during the last decade and even attracting interest of leading industrial companies. As a contribution to this world wide effort, we have designed, fabricated and characterized a class of monolithic and hybrid silicon integrated optical devices. These devices were realized on high-quality silicon-on-insulator (SOI) wafers. Beam propagation method (BPM) based simulations and analytical calculations were employed for the design. We have demonstrated for the first time an SOI device that splits light into its TE and TM components. An SOI rib waveguide becomes birefringent as its size reduced. This idea is used to design and fabricate a directional coupler polarization splitter based on geometrical birefringence. The device uses 1 µm sized SOI waveguides. This compact device (only 110 µm in length) shows extinction ratios larger than 20 dB. SOI waveguides with the same geometry was used to realize a batch of single and double bus racetrack resonators having radii in the range of 20 to 500 µm. Design of these racetrack resonators are presented in detail. The bending loss and coupling factor calculations were performed using BPM. During the design and analysis of waveguide resonators, we proposed a novel displacement sensor that can be used for scanning probe microscopies. The sensor operates by means of monitoring the changes in transmission spectrum of a high finesse micro-ring resonator due to stress induced by displacement. Operation principles and sensitivity calculations are discussed in detail. SOI resonators with quality factors (Q) as high as 119000 have been achieved. This is the highest Q value for resonators based on SOI rib waveguides to date. Finesse values as large as 43 and modulation depths of 15 dB were observed. Free spectral ranges increased from 0.2 nm to 3.0 nm when radius was decreased from 500 to 20 µm. The thermo-optical tunability of these resonators were also studied. A high-Q racetrack resonator is used to develop a wavelength selective optical switch. The resonator was thermo-optically scanned over its full free spectral range applying only 57 mW of electrical power. A low power of 17 mW was enough to tune from resonance to off-resonance state. The device functioned as a wavelength selective optical switch with a 3 dB cutoff frequency of 210 kHz. We have also demonstrated wavelength add/drop filters using the same racetrack resonators with double bus. Asymmetric lateral coupling was used in order to get better filter characteristics. Filters with crosstalks as low as -10.0 dB and Q-factors of as high as 51000 were achieved. Finally, we introduce the use of a layer transfer method for SOI wafers. Such a layer transfer results in the possibility of using the back side of the silicon layer in SOI structure for further processing. With this method, previously fabricated SOI waveguides were transferred to form hybrid silicon-polymer waveguides. Benzocyclobutene (BCB) polymer was used as the bonding agent. The method is also applied to SOI M-Z interferometers to explore the possibilities of the technology. We additionally studied asymmetric vertical couplers (AVC) based on polymer and silicon waveguides and fabricated them using a hybrid technology.
      Keywords
      Integrated optics
      Silicon-on-insulator technology
      Optical waveguides
      Polarization splitters
      Ring resonators
      Racetrack resonators
      Displacement sensors
      Wavelength add-drop filters
      Thermo-optical effect
      Wavelength selective optical switch
      Hybrid integration
      Wafer bonding
      Mach-Zehnder modulator
      Asymmetric vertical coupler
      Permalink
      http://hdl.handle.net/11693/29697
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 76
      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Thumbnail

        Dimensioning shared-per-node recirculating fiber delay line buffers in an optical packet switch 

        Akar, N.; Gunalay, Y. (Elsevier, 2013)
        Optical buffering based on fiber delay lines (FDLs) has been proposed as a means for contention resolution in an optical packet switch. In this article, we propose a queuing model for feedback-type shared-per-node recirculating ...
      • Thumbnail

        Engineering particle trajectories in microfluidic flows using speckle light fields 

        Volpe, G.; Volpe, Giovanni; Gigan, S. (SPIE, 2014)
        Optical tweezers have been widely used in physics, chemistry and biology to manipulate and trap microscopic and nanoscopic objects. Current optical trapping techniques rely on carefully engineered setups to manipulate ...
      • Thumbnail

        An optical microcantilever with integrated grating coupler 

        Olcum, Selim; Karademir, Ertuğrul; Taş. Vahdettin; Akça, İmran; Kocabaş, Aşkın; Atalar, Abdullah; Aydınlı, Aydınlı (IEEE, 2009-06)
        In this paper, we have fabricated an optical cantilever with an integrated grating coupler. We have used an inexpensive and repeatable method for integrating the grating to the silicon cantilever with a microfabrication ...

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy