• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Cluster based collaborative filtering with inverted indexing

      Thumbnail
      View / Download
      702.5 Kb
      Author
      Subakan, Özlem Nurcan
      Advisor
      Ulusoy, Özgür
      Date
      2005
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      34
      views
      9
      downloads
      Metadata
      Show full item record
      Abstract
      Collectively, a population contains vast amounts of knowledge and modern communication technologies that increase the ease of communication. However, it is not feasible for a single person to aggregate the knowledge of thousands or millions of data and extract useful information from it. Collaborative information systems are attempts to harness the knowledge of a population and to present it in a simple, fast and fair manner. Collaborative filtering has been successfully used in domains where the information content is not easily parse-able and traditional information filtering techniques are difficult to apply. Collaborative filtering works over a database of ratings for the items which are rated by users. The computational complexity of these methods grows linearly with the number of customers which can reach to several millions in typical commercial applications. To address the scalability concern, we have developed an efficient collaborative filtering technique by applying user clustering and using a specific inverted index structure (so called cluster-skipping inverted index structure) that is tailored for clustered environments. We show that the predictive accuracy of the system is comparable with the collaborative filtering algorithms without clustering, whereas the efficiency is far more improved.
      Keywords
      Collaborative filtering
      Recommender systems
      Clustering
      Inverted files
      Performance evaluation
      Permalink
      http://hdl.handle.net/11693/29692
      Collections
      • Dept. of Computer Engineering - Master's degree 489

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University | Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin