Show simple item record

dc.contributor.advisorGürses, Metinen_US
dc.contributor.authorSilindir, Burcuen_US
dc.date.accessioned2016-07-01T11:01:20Z
dc.date.available2016-07-01T11:01:20Z
dc.date.issued2004
dc.identifier.urihttp://hdl.handle.net/11693/29556
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIn soliton theory, integrable nonlinear partial differential equations play an important role. In that respect such differential equations create great interest in many research areas. There are several ways to obtain these differential equations; among them zero curvature and Gel’fand-Dikii formalisms are more effective. In this thesis, we studied these formalisms and applied them to explicit examples.en_US
dc.description.statementofresponsibilitySilindir, Burcuen_US
dc.format.extentvii, 75 leavesen_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIntegrable systemsen_US
dc.subjectGel’fand-Dikii formalismen_US
dc.subjectzero curvature formalismen_US
dc.subjectsolitonen_US
dc.subjectsimple Lie algebraen_US
dc.subject.lccQA614.8 .S55 2004en_US
dc.subject.lcshDifferential dynamical systems.en_US
dc.titleZero curvature and Gel'fand-Dikii formalismsen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidBILKUTUPB084145


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record