• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Acquired tolerance of hepatocellular carcinoma cells to selenium-deficiency : a selective survival mechanism

      Thumbnail
      View / Download
      5.3 Mb
      Author
      Irmak, Meliha Burcu
      Advisor
      Çetin-Atalay, Rengül
      Date
      2003
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      87
      views
      31
      downloads
      Abstract
      Selenium-deficiency causes liver necrosis. Selenium is protective against viral hepatitis and hepatocellular carcinoma (HCC). The underlying molecular mechanisms of selenium effects are ill-known. In this study in vitro response of hepatocellular carcinoma-derived cell lines to selenium-deficiency is examined alone or in conjunction with Vitamin E and Copper/Zinc. Here we show that in vitro selenium-deficiency in a subset HCC-derived ‘hepatocyte-like’ cell lines causes oxidative stress and apoptosis. The oxidative stress and consequent cell death induced by selenium-deficiency on these cells are reverted by the antioxidant effect of Vitamin E. However, ten among thirteen HCC cell lines are tolerant to selenium-deficiency and escape its deadly consequences. Nine of ten tolerant cell lines have integrated hepatitis B Virus (HBV) DNA in their genomes, and some display p53-249 mutation, indicating past exposure to HBV or aflatoxins, established factors for oxidative stress and cancer risk. Thus, as demonstrated by the gain of survival capacity of apoptosis sensitive cell lines with Vitamin E, such malignant cells have acquired a selective survival advantage that is prominent under selenium-deficient and oxidative stress conditions.
      Permalink
      http://hdl.handle.net/11693/29400
      Collections
      • Dept. of Molecular Biology and Genetics - Ph.D. / Sc.D. 70
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy