• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      On-line new event detection and clustering using the concepts of the cover coefficient-based clustering methodology

      Thumbnail
      View / Download
      823.6 Kb
      Author(s)
      Vural, Ahmet
      Advisor
      Can, Fazlı
      Date
      2002
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      133
      views
      32
      downloads
      Abstract
      In this study, we use the concepts of the cover coefficient-based clustering methodology (C3 M) for on-line new event detection and event clustering. The main idea of the study is to use the seed selection process of the C3 M algorithm for the purpose of detecting new events. Since C3 M works in a retrospective manner, we modify the algorithm to work in an on-line environment. Furthermore, in order to prevent producing oversized event clusters, and to give equal chance to all documents to be the seed of a new event, we employ the window size concept. Since we desire to control the number of seed documents, we introduce a threshold concept to the event clustering algorithm. We also use the threshold concept, with a little modification, in the on-line event detection. In the experiments we use TDT1 corpus, which is also used in the original topic detection and tracking study. In event clustering and event detection, we use both binary and weighted versions of TDT1 corpus. With the binary implementation, we obtain better results. When we compare our on-line event detection results to the results of UMASS approach, we obtain better performance in terms of false alarm rates.
      Keywords
      Clustering
      on-line event clustering
      on-line event detection
      Permalink
      http://hdl.handle.net/11693/29247
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy