Show simple item record

dc.contributor.advisorGoncharov, Alexanderen_US
dc.contributor.authorZeki, Mustafaen_US
dc.date.accessioned2016-07-01T10:56:18Z
dc.date.available2016-07-01T10:56:18Z
dc.date.issued2002
dc.identifier.urihttp://hdl.handle.net/11693/29240
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIn this work we consider the spaces of Whitney functions defined on convergent sequences of points.By means of linear topological invariants we analyze linear topological structure of these spaces .Using diametral dimension we found a continuum of pairwise non-isomorphic spaces for so called regular type and proved that more refined invariant compound invariants are not stronger than diametral dimension in this case . On the other hand, we get the same diametral dimension for the spaces of Whitney functions defined on irregular compact sets.en_US
dc.description.statementofresponsibilityZeki, Mustafaen_US
dc.format.extentvi, 40 leavesen_US
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLinear Topological Invariantsen_US
dc.subjectWhitney Functionsen_US
dc.subjectDiametral Dimensionen_US
dc.subjecten_US
dc.subject.lccQA322 .Z45 2002en_US
dc.subject.lcshLinear topological spaces.en_US
dc.titleLinear topological structure of spaces of Whitney functions defined on sequences of pointsen_US
dc.typeThesisen_US
dc.departmentDepartment of Mathematicsen_US
dc.publisherBilkent Universityen_US
dc.description.degreeM.S.en_US
dc.identifier.itemidBILKUTUPB067718


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record