• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Survival prediction via partial ordering in feature space and sample space

      Thumbnail
      Embargo Lift Date: 2018-03-10
      View / Download
      2.1 Mb
      Author(s)
      Büyüközkan, Mustafa
      Advisor
      Taştan, Öznur
      Date
      2016-03
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      124
      views
      95
      downloads
      Abstract
      Predicting the survival of a cancer patient is critical for choosing patient specific treatment strategies and is traditionally based on clinical or pathological factors such as patient age and tumor stage. In this thesis, we present two methodologies to build effective and interpretable survival models that utilize high-dimensional molecular profiles made available through next-gen sequencing technologies. Firstly, we present a method that focuses on partial ordering in the feature space. Existing models rely on the individual molecular quantities recorded in tumors; however, cancer is a complex disease where molecular mechanisms are dysregulated in various ways. This study, based on a system level perspective, incorporates the partial ordering of molecules (POF) in lieu of individual quantities. This strategy not only unveils predictive features with direct relevance to the biological mechanism and but also yields better performance in survival prediction compared to multivariate `1 penalized Cox proportional hazard and Random Survival Forest models. Testing the partial order representation of features in the subgroup identification task, we find that these features yield groups of patients, which are more quantifably distinct in terms of survival distributions. Secondly, we develop a survival prediction method based on ranking and support vector machines { Ranking Survival Vector Machines (RsurVM). RsurVM obtains a pairwise ranking of the patient survival times by learning to rank. It focuses on optimizing the most commonly used metric concordance index and can handle the censored data without making any assumptions. Our extensive tests on the ovarian adenocarcinoma patient molecular data demonstrate that RsurVM achieves better survival predictions regardless of the input molecular data (mRNA, protein, miRNA, Copy number variation and DNA methylation) than the two most commonly used methods: Cox-proportional hazards model and Random Survival Forest.
      Keywords
      Survival estimation
      Pairwise ranking
      Partial ordering
      Biologically interpretible features
      Permalink
      http://hdl.handle.net/11693/29092
      Collections
      • Dept. of Computer Engineering - Master's degree 517
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy