• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Optimization of an educational search engine using learning to rank algorithms

      Thumbnail
      View / Download
      1.6 Mb
      Author
      Usta, Arif
      Advisor
      Ulusoy, Özgür
      Date
      2015-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      75
      views
      29
      downloads
      Abstract
      Web search is one of the most popular internet activities among users. Due to high usage of search engines, there are huge data available about history of user search issues. Using query logs as a source of implicit feedback, researchers can learn useful patterns about general search behaviors. We employ a detailed query log analysis provided by a commercial educational vertical search engine. We compare the results of our query log analysis with the general web search characteristics. Due to di erence in terms of search behavior between web users and students, we propose an educational ranking model using learning to rank algorithms to better re ect the search habits of the students in the educational domain to further enhance the search engine performance. We introduce novel features best suited to the educational domain. We show that our model including educational features outperforms two baseline models which are the original ranking of the commercial educational vertical search engine and the model constructed using the state of the art ranking functions, up to 14% and 11%, respectively. We also employ di erent learning to rank models for di erent clusters of queries and the results indicate that having models for each cluster of queries further enhances the performance of our proposed model. Speci cally, the course of the query and the grade of the user issuing the query are good sources of feedback to have a better model in the educational domain. We propose a novel Propagation Algorithm to be used for queries having lower frequencies where information derived from query logs is not enough to exploit. We report that our model constructed using the features generated by our proposed algorithm performs better for singleton queries compared to both the educational learning to rank model we introduce and models learned with common features introduced in the literature.
      Keywords
      Information retrieval
      Web search
      Vertical search engine
      Learning to rank algorithms
      Educational domain
      Permalink
      http://hdl.handle.net/11693/29079
      Collections
      • Dept. of Computer Engineering - Master's degree 508
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy