• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Anomaly detection with sparse unmixing and gaussian mixture modeling of hyperspectral images

      Thumbnail
      Embargo Lift Date: 2017-08-28
      View / Download
      18.4 Mb
      Author(s)
      Erdinç, Acar
      Advisor
      Aksoy, Selim
      Date
      2015-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      191
      views
      351
      downloads
      Abstract
      One of the main applications of hyperspectral image analysis is anomaly detection where the problem of interest is the detection of small rare objects that stand out from their surroundings. A common approach to anomaly detection is to rst model the background scene and then to use a detector that quanti es the di erence of a particular pixel from this background. However, identifying the dominant background components and modeling them is a challenging task. We propose an anomaly detection framework that uses Gaussian mixture models for characterizing the scene background in hyperspectral images. First, the full spectrum is divided into several contiguous band groups for dimensionality reduction as well as for exploiting the peculiarities of di erent parts of the spectrum. Then, sparse spectral unmixing is performed for each band group for identifying signi cant endmembers in the scene. Three methods for identifying the dominant background groups such as thresholding, hierarchical clustering and biclustering are used in the endmember abundance space to retrieve the sets of pixel groups that represent dominant background components. Next, these pixel groups are used for initializing individual Gaussian mixture models that are estimated separately for each spectral band group. The proposed method enables automatic identi cation of the number of mixture components and e ective initialization of the estimation procedure for the mixture model. Finally, the Gaussian mixture models for all groups are statistically fused for obtaining the nal anomaly map for the scene. Comparative experiments showed that the proposed methods performed better than two other density-based anomaly detectors, especially for small false positive rates, on an airborne hyperspectral data set.
      Keywords
      Anomaly detection
      Spectral unmixing
      Gaussian mixture model
      Hierarchical clustering
      Biclustering
      Hyperspectral imaging
      Permalink
      http://hdl.handle.net/11693/29075
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy