• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Peptide nanostructure templated growth of iron phosphate nanostrustures for energy storage applications

      Thumbnail
      Embargo Lift Date: 2016-12-29
      View / Download
      4.1 Mb
      Author
      Susapto, Hepi Hari
      Advisor
      Güler, Mustafa Özgür
      Date
      2015-12
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      96
      views
      151
      downloads
      Abstract
      The use of primary cells has been replaced with rechargeable batteries due to environmental concerns. Li-ion batteries are examples of the rechargeable batteries that have replaced other types of rechargeable batteries from market due to high capacity, high electrochemical potential, superior energy density, durability, as well as the flexibility in design. Compared to other cathode materials used in Li-ion batteries, the iron oxide (FePO4) is less toxic, environmentally friendly, and less expensive. Inorganic materials can be fabricated by template-directed mineralization to enable control over size and morphology. One-Dimensional (1-D) nanostructures can be used for template directed mineralization method. The nanostructures are particularly interesting as electrode materials due to their high surface area, large surface-to-volume ratio, and favorable structural stability. They provide fast ion/electron transfer by sufficient contact between the active materials and electrolyte. In this thesis, 1-D nanostructures of FePO4 materials with high surface area were synthesized to enhance the efficiency of Li-ion batteries. The synthesis of iron phosphate nanostructures was performed by using peptide amphiphile nanostructures. Iron (III) chloride (FeCl3) was used to trigger the self-assembly of the peptide amphiphile molecules forming nanostructures, which can nucleate FePO4 formation. The electrochemical performance of these nanostructures for Li-ion battery was analyzed. In conclusion, the template directed electrode materials revealed fast ion/electron transfer and sufficient contact between materials and electrolyte. They also exhibited enhanced flexibility leading to higher capacity than the electrode material synthesized without the template.
      Keywords
      Peptide amphiphile
      Self-assembly
      Hydrogel
      One-dimensional Nanostructure
      Nanofiber
      Nanobelt
      Template-directed materials
      Iron phosphate
      Lithium-ion batteries
      Permalink
      http://hdl.handle.net/11693/29031
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Master's degree 140
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy