Three dimensional processing of silicon with pulsed lasers for optical applications

Available
The embargo period has ended, and this item is now available.

Date

2015-05

Editor(s)

Advisor

İlday, F. Ömer

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
27
downloads

Series

Abstract

Micromachining of silicon with lasers is being investigated for the last three decades. Until now, interior silicon modification without inscribing the surface has not resulted in success. Such an ability could enable disruptive technologies in nanophotonics by paving the way for producing monolithic optoelectronic chips. Here, we report a maskless, one step photo-induced method to generate subsurface modifications in silicon with pulsed infrared lasers for indefinitely large areas. We demonstrate continuous, highly controllable structures buried in the bulk of silicon wafers and investigate the underlying mechanism. Further, we utilize the method for spatial information encoding and fabrication of optical components in the infrared regime in silicon. This silicon processing technology can be useful in various applications, including multilayer silicon chips, solar cells and opto uidics.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type