• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Three dimensional glycosaminoglycan mimetic peptide amphiphile hydrogels for regenerative medicine applications

      Thumbnail
      Embargo Lift Date: 2017-05-01
      View / Download
      9.9 Mb
      Author
      Tümtaş, Yasin
      Advisor
      Tekinay, Ayşe Begüm
      Date
      2015-05
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      87
      views
      217
      downloads
      Abstract
      Defects and impairments of tissues or organs affect millions of people, resulting in considerable losses in workforce and life quality. The treatment of major tissue injuries requires the development of advanced medical techniques that enhance the natural repair processes of the human body. Novel biomaterials can modulate the repair of organs and tissues by providing a suitable environment for the recruitment, proliferation and differentiation of stem and progenitor cells, allowing the recovery of degenerated or otherwise nonfunctional tissues. Peptide amphiphiles (PAs) serve as model biomaterials due to their capacity for self-assembly, which allows peptide monomers to form complex networks that approximate the structure and function of the natural extracellular matrix. Peptide networks can be further modified by the attachment of various epitopes and functional groups, allowing these materials to present bioactive signals to surrounding cells. Glycosaminoglycans (GAGs) are negatively charged, unbranched polysaccharides that constitute a substantial part of the ECM in various tissues and play an important role in maintaining tissue integrity. Therefore, mimicking GAGs presents a suitable means for modulating cell behavior and especially lineage commitment in stem cells. In this work, I describe the design and synthesis of several bioactive, three dimensional (3D) GAG-mimetic peptide amphiphile hydrogels for in vitro stem cell differentiation and in vivo pancreatic islet transplantation. In Chapter 1, I detail the extracellular environment of tissues and the importance of GAGs in maintaining cell and tissue function. In Chapter 2, I describe the in vitro experiments involving the effects of sulfonation and the presence of glucose units on the differentiation of mesenchymal stem cells. In Chapter 3, I utilize a heparin-mimetic PA to increase the survival of pancreatic islets transplanted into the rat omentum, and demonstrate that increased angiogenesis results in enhanced survival. Lastly, in Chapter 4, I summarize my results and describe the course of future experiments for the artificial regeneration of tissues through peptide amphiphile networks.
      Keywords
      Extracellular matrix
      Peptide hydrogels
      Glycosaminoglycans
      Biomimetic
      Mesenchymal stem cell
      Differentiation
      Islet transplantation
      Angiogenesis
      Permalink
      http://hdl.handle.net/11693/29020
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Master's degree 142
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy