• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Nuclear spin relaxation and spin squeezing under electric quadrupole interaction

      Thumbnail
      Embargo Lift Date: 2016-09-01
      View / Download
      11.3 Mb
      Author
      Aksu, Yağmur
      Advisor
      Bulutay, Ceyhun
      Date
      2015-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      84
      views
      79
      downloads
      Abstract
      Nuclear spins dynamics recently gained prominence for semiconductor quantum information technologies. At least two rami cations can be mentioned within this context: rst, as a decoherence channel for carrier spin qubit stored in a quantum dot, and second as a potential quantum memory with the proviso that the nuclear spin bath can be tamed. To shed light on either of these matters, this thesis presents numerical simulations of spin dynamics of quadrupolar nuclei which constitute a large fraction of group III-V semiconductors. Particular attention is devoted to the electric quadrupole interaction that prevail in these strained semiconductor structures. Within Lindblad master equation formalism, the saturation under an incoherent radio frequency pump, and subsequent relaxation of spin-3/2 nuclei are studied. The quadrupole interaction does not manifest itself via a conspicuous ngerprint in these processes other than causing faster relaxation. However, we identify that its prime role is in spin squeezing. The characteristics of all spins between 1/2 to 9/2 have been thoroughly investigated under one-axis, mixed-axis, and two-axis countertwisting conditions. Our main conclusion is that the presence of quadrupole interaction substantially degrades the average level of squeezing, which further complicates the quantum control of nuclear spin bath uctuations.
      Keywords
      Nuclear spin dynamics
      Spin relaxation
      Electric quadrupole interaction
      Spin squeezing
      Permalink
      http://hdl.handle.net/11693/29019
      Collections
      • Dept. of Physics - Master's degree 160
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy