• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mechanical and controller design of a modular mechatronic device - mechacell

      Thumbnail
      View / Download
      59.4 Mb
      Author
      Ristevski, Stefan
      Advisor
      Çakmakcı, Melih
      Date
      2015-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      154
      views
      46
      downloads
      Abstract
      Since ancient times people have been building tools to aid them in their life. Robots evolved from being purely mechanical to mechatronic, from immobile to mobile and became smaller in scale. As the technology in building robots matured researchers, began working to build robotic systems that cooperate similar to the ones in nature. Ability of ants to accomplish tasks beyond the capability of a single ant intrigued scientists in robotics society to mimic that feature of ants and develop simple modules that alone cannot accomplish much, but together can complete complex assignments. Our motivation is to develop a miniaturizable mechatronic module{MechaCell. Mechanical design focuses on a novel locomotion system having a mechanism that converts vibrations into translational motion. Two independent controllers, one for steering and one for translational speed control are designed such that MechaCell can follow a complex path and group of MechaCells can guide an object to follow a complex path. Simulation results from the model of the MechaCell developed in SimMechanics are presented. Experimental setup comprising of a Bluetooth enabled PC, a platform, an overhead camera and four MechaCells is set up and simulation results are experimentally veri ed. Possible application of coordinated object manipulation is in manufacturing systems that have limited xture capabilities and desired precision in sub{centimeter levels.
      Keywords
      Modular
      Coordinated object manipulation
      Locomotion system
      Vibration utilization
      Permalink
      http://hdl.handle.net/11693/28903
      Collections
      • Dept. of Mechanical Engineering - Master's degree 66
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy