Show simple item record

dc.contributor.authorMalas, Tahiren_US
dc.contributor.authorGürel, Leventen_US
dc.coverage.spatialIzmir, Turkey
dc.date.accessioned2016-02-08T12:27:30Z
dc.date.available2016-02-08T12:27:30Z
dc.date.issued2009-07en_US
dc.identifier.urihttp://hdl.handle.net/11693/28701
dc.descriptionConference name: Computational Electromagnetics International Workshop, CEM 2009
dc.descriptionDate of Conference: 20-23 July 2009
dc.description.abstractWe propose direct and iterative versions of approximate Schur preconditioners to increase robustness and efficiency of iterative solutions of dielectric problems formulated with surface integral equations. The performance of these preconditioners depends on the availability of fast and approximate solutions to reduced matrix systems. We show that sparse-approximate-inverse techniques provide a suitable mechanism for this purpose. The proposed preconditioners are demonstrated to significantly improve convergence rates of dielectric problems formulated with two different surface integral equations. ©2009 IEEE.en_US
dc.language.isoEnglishen_US
dc.source.titleComputational Electromagnetics International Workshop, CEM 2009en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CEM.2009.5228104en_US
dc.subjectApproximate solutionen_US
dc.subjectConvergence ratesen_US
dc.subjectInverse techniquesen_US
dc.subjectIterative solutionsen_US
dc.subjectPreconditionersen_US
dc.subjectReduced matrixen_US
dc.subjectSurface integral equationsen_US
dc.subjectIntegral equationsen_US
dc.titleApproximate Schur preconditioners for efficient solutions of dielectric problems formulated with surface integral equationsen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentComputational Electromagnetics Research Center (BiLCEM)en_US
dc.citation.spage44en_US
dc.citation.epage49en_US
dc.identifier.doi10.1109/CEM.2009.5228104en_US
dc.publisherIEEE
dc.contributor.bilkentauthorGürel, Levent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record