• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Electrospun polyethylene oxide (PEO) nanofibers containing cyclodextrin inclusion complex

      Thumbnail
      View / Download
      2.6 Mb
      Author
      Uyar, Tamer
      Hacaloglu, J.
      Besenbacher, F.
      Date
      2011
      Source Title
      Journal of Nanoscience and Nanotechnology
      Print ISSN
      1533-4880
      Electronic ISSN
      1533-4899
      Publisher
      American Scientific Publishers
      Volume
      11
      Issue
      5
      Pages
      3949 - 3958
      Language
      English
      Type
      Article
      Item Usage Stats
      130
      views
      130
      downloads
      Abstract
      In this study, we obtained functional electrospun nanofibers containing stable fragrance/flavor molecule facilitated by cyclodextrin inclusion complexation. Menthol was used as a model fragrance/flavor molecule and we have electrospun poly(ethylene oxide) (PEO) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-IC). We used two different solvent systems; water and water:ethanol and three types of CDs; α-CD, β-CD and γ-CD in order to find the optimal performance for the stabilization of menthol at high temperatures. We observed that the solvent system used for electrospinning process and the types of CDs (α-CD, β-CD and γ-CD) are very important to obtain CD-menthol-IC which ultimately determines the durability and temperature stability of menthol in the PEO nanofibrous web. We found out that it is better to use water rather than the water:ethanol solvent system for the inclusion complexation and additionally β-CD and γ-CD are most favorable choices since they are able to form complexation with menthol in the water solvent system. Despite the high volatility nature of menthol, our results demonstrated that the stability and temperature release of menthol was sustained to a very high and a broad temperature range (100 °C-250 °C) for PEO nanowebs containing CD-menthol-IC whereas the PEO nanofibers without CD and without CD-menthol complex could not preserve menthol even during storage. In brief, the results are very encouraging and open up for a variety of new exciting possibilities for the development of multi-functional electrospun nanofibers containing cyclodextrin inclusion complexes. Copyright © 2011 American Scientific Publishers All rights reserved.
      Keywords
      Cyclodextrin
      Electrospinning
      Inclusion complex
      Menthol
      Nanofiber
      Poly(ethylene oxide) (PEO)
      Permalink
      http://hdl.handle.net/11693/28409
      Published Version (Please cite this version)
      http://dx.doi.org/10.1166/jnn.2011.3867
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy