Show simple item record

dc.contributor.authorCihan, Canen_US
dc.contributor.authorArifler, D.en_US
dc.coverage.spatialMunich, Germanyen_US
dc.date.accessioned2016-02-08T12:19:07Z
dc.date.available2016-02-08T12:19:07Z
dc.date.issued2011en_US
dc.identifier.issn1605-7422
dc.identifier.urihttp://hdl.handle.net/11693/28380
dc.descriptionConference name: Progress in Biomedical Optics and Imaging, Clinical and Biomedical Spectroscopy and Imaging IIen_US
dc.descriptionDate of Conference: 24–26 May 2011en_US
dc.description.abstractMetal nanoparticles can function as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo simulations to model photon propagation through normal tissues, unlabeled precancerous tissues, and precancerous tissues labeled with gold nanospheres and we compute the spectral reflectance response of these different tissue states. The results indicate that nanoparticle-induced changes in the spectral reflectance profile of tissues depend not only on the properties of these particles but also on the source-detector geometry used. When the source and detector fibers are oriented side by side and perpendicular to the tissue surface, the reflectance intensity of precancerous tissue is lower compared to that of normal tissue over the entire wavelength range simulated and addition of nanospheres enhances this negative contrast. When the fibers are tilted toward each other, the reflectance intensity of precancerous tissue is higher compared to that of normal tissue and labeling with nanospheres causes a significant enhancement of this positive contrast. The results also suggest that model-based spectral analysis of photon propagation through nanoparticle-labeled tissues provides a useful framework to quantify the extent of achievable contrast enhancement due to external labeling and to assess the diagnostic potential of nanoparticle-enhanced optical measurements. © 2011 SPIE-OSA.en_US
dc.language.isoEnglishen_US
dc.source.titleProceedings of SPIE, Progress in Biomedical Optics and Imagingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.889421en_US
dc.subjectEpithelial precanceren_US
dc.subjectMonte Carlo modelingen_US
dc.subjectNanoparticlesen_US
dc.subjectOptical spectroscopyen_US
dc.subjectPhoton propagationen_US
dc.subjectReflectanceen_US
dc.subjectContrast Enhancementen_US
dc.subjectDiagnostic potentialen_US
dc.subjectEpithelial precanceren_US
dc.subjectEpithelial tissueen_US
dc.subjectGold nanospheresen_US
dc.subjectMetal nanoparticlesen_US
dc.subjectMonte Carlo modelingen_US
dc.subjectMonte Carlo Simulationen_US
dc.subjectNormal tissueen_US
dc.subjectOptical contrasten_US
dc.subjectOptical measurementen_US
dc.subjectOptical spectroscopyen_US
dc.subjectPhoton propagationen_US
dc.subjectSpectral reflectancesen_US
dc.subjectTissue surfaceen_US
dc.subjectWavelength rangesen_US
dc.subjectComputer simulationen_US
dc.subjectHistologyen_US
dc.subjectMonte Carlo methodsen_US
dc.subjectNanoparticlesen_US
dc.subjectNanospheresen_US
dc.subjectOptical data processingen_US
dc.subjectPhotonsen_US
dc.subjectReflectionen_US
dc.subjectSpectroscopyen_US
dc.subjectSpectrum analysisen_US
dc.subjectTissueen_US
dc.titleModel-based spectral analysis of photon propagation through nanoparticle-labeled epithelial tissuesen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Electrical and Electronics Engineering
dc.citation.volumeNumber8087en_US
dc.identifier.doi10.1117/12.889421en_US
dc.publisherSPIEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record