Show simple item record

dc.contributor.authorLecaplain, C.en_US
dc.contributor.authorOrtac, Bülenden_US
dc.contributor.authorMacHinet G.en_US
dc.contributor.authorBoullet J.en_US
dc.contributor.authorBaumgartl, M.en_US
dc.contributor.authorSchreiber, T.en_US
dc.contributor.authorCormier, E.en_US
dc.contributor.authorHideur, A.en_US
dc.coverage.spatialMunich, Germanyen_US
dc.date.accessioned2016-02-08T12:18:08Z
dc.date.available2016-02-08T12:18:08Z
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/11693/28351
dc.descriptionDate of Conference: 22-26 May 2011en_US
dc.description.abstractEnergy scaling of ultrafast Yb-doped fiber oscillators has experienced rapid progress largely driven by many applications that require high average power femtosecond pulses. The fundamental challenge for ultrafast fiber lasers relies on the control of excessive nonlinearity, which limits pulse energy. The development of all-normal dispersion laser cavities based on large-mode-area photonic crystal fibers (PCFs) has enabled significant energy scaling [1-3]. In particular, up to microjoule energy levels have been achieved from rod-type fiber-based oscillators [2-3]. In such lasers, pulse shaping is dominated by the strength of the mode-locking mechanism which determines the pulse properties. In this contribution, we report the generation of high-energy sub-picosecond pulses from a highly normal dispersion fiber laser featuring an Yb-doped rod-type PCF and a large-mode-area PCF [Fig.1(a)]. Passive mode-locking is achieved using saturable absorber mirrors (SAMs). We study the influence of the SAM parameters on performances obtained in this new class of fiber oscillators. The structures exhibit 20 % modulation depths and 500 fs relaxation time with resonant and antiresonant designs. The antiresonant SAM structures ensure absorption bandwidths 45 nm while the resonant structures exhibit 20 nm bandwidths. Stable mode locking with average powers as high as 15 μW at 15 MHz repetition rate, corresponding to microjoule energy level are obtained with all the structures. However, pulse properties and pulse shaping mechanism distinguish between resonant and antiresonant designs. Using a broadband antiresonant SAM leads to generation of highly-chirped pulses with 30 ps duration and 10 nm spectral width [Fig.1(b)]. The output pulses are extra-cavity dechirped down to 550 fs duration. By increasing the strength of the mode-locking mechanism through the combination of the SAM with the NPE process, we obtain shorter pulses with slightly boarder spectra. Indeed, the output pulse duration is decreased from 30 ps to 13 ps by adjusting the wave-plates settings. The dechirped pulse duration is then shortened to 450 fs. We note that the current laser performances are limited to 1 J by the available pump power. Using a resonant SAM structure, the output pulse duration is decreased to 7 ps [Fig.1(b)]. This pulse shortening results from the spectral filtering induced by the limited SAM bandwidth. All these results are in good agreement with numerical simulations which will be discussed in this communication. © 2011 IEEE.en_US
dc.language.isoEnglishen_US
dc.source.title2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CLEOE.2011.5942877en_US
dc.subjectAntiresonanten_US
dc.subjectEnergy levelen_US
dc.subjectEnergy scalingen_US
dc.subjectHigh average poweren_US
dc.subjectHigh energyen_US
dc.subjectLarge-mode-area photonic crystal fibersen_US
dc.subjectLaser performanceen_US
dc.subjectMicrojouleen_US
dc.subjectMode-lockeden_US
dc.subjectModelockingen_US
dc.subjectModulation depthen_US
dc.subjectNon-Linearityen_US
dc.subjectNormal dispersionen_US
dc.subjectOutput pulseen_US
dc.subjectPassive mode lockingen_US
dc.subjectPulse durationsen_US
dc.subjectPulse energiesen_US
dc.subjectPulse shorteningen_US
dc.subjectPulse-shapingen_US
dc.subjectPump poweren_US
dc.subjectRepetition rateen_US
dc.subjectResonant structuresen_US
dc.subjectSamsen_US
dc.subjectSaturable absorber mirrorsen_US
dc.subjectSpectral filteringen_US
dc.subjectSpectral widthsen_US
dc.subjectStable mode lockingen_US
dc.subjectUltra-fasten_US
dc.subjectUltrafast fiber lasersen_US
dc.subjectYb-doped fibersen_US
dc.subjectBandwidthen_US
dc.subjectDispersion (waves)en_US
dc.subjectElectromagnetic pulseen_US
dc.subjectElectron opticsen_US
dc.subjectFiber lasersen_US
dc.subjectFibersen_US
dc.subjectMode-locked fiber lasersen_US
dc.subjectOpticsen_US
dc.subjectPhotonic crystalsen_US
dc.subjectPulse shaping circuitsen_US
dc.subjectPumping (laser)en_US
dc.subjectQuantum electronicsen_US
dc.subjectSingle mode fibersen_US
dc.subjectUltrashort pulsesen_US
dc.subjectYtterbiumen_US
dc.subjectPhotonic crystal fibersen_US
dc.titleProperties of a microjoule-class fiber oscillator mode-locked with a SESAMen_US
dc.typeConference Paperen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.identifier.doi10.1109/CLEOE.2011.5942877en_US
dc.publisherIEEEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record