• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      eTutor: online learning for personalized education

      Thumbnail
      View / Download
      351.2 Kb
      Author
      Tekin, Cem
      Braun, J.
      Schaar, Mihaela van der
      Date
      2015-04
      Source Title
      IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings
      Publisher
      IEEE
      Pages
      5545 - 5549
      Language
      English
      Type
      Conference Paper
      Item Usage Stats
      147
      views
      147
      downloads
      Abstract
      Given recent advances in information technology and artificial intelligence, web-based education systems have became complementary and, in some cases, viable alternatives to traditional classroom teaching. The popularity of these systems stems from their ability to make education available to a large demographics (see MOOCs). However, existing systems do not take advantage of the personalization which becomes possible when web-based education is offered: they continue to be one-size-fits-all. In this paper, we aim to provide a first systematic method for designing a personalized web-based education system. Personalizing education is challenging: (i) students need to be provided personalized teaching and training depending on their contexts (e.g. classes already taken, methods of learning preferred, etc.), (ii) for each specific context, the best teaching and training method (e.g type and order of teaching materials to be shown) must be learned, (iii) teaching and training should be adapted online, based on the scores/feedback (e.g. tests, quizzes, final exam, likes/dislikes etc.) of the students. Our personalized online system, e-Tutor, is able to address these challenges by learning how to adapt the teaching methodology (in this case what sequence of teaching material to present to a student) to maximize her performance in the final exam, while minimizing the time spent by the students to learn the course (and possibly dropouts). We illustrate the efficiency of the proposed method on a real-world eTutor platform which is used for remedial training for a Digital Signal Processing (DSP) course. © 2015 IEEE.
      Keywords
      eLearning
      Intelligent tutoring systems
      Online learning
      Personalized education
      Permalink
      http://hdl.handle.net/11693/28019
      Published Version (Please cite this version)
      https://doi.org/10.1109/ICASSP.2015.7179032
      Collections
      • Department of Electrical and Electronics Engineering 3524
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy