Show simple item record

dc.contributor.authorYavaş, Seydien_US
dc.contributor.authorAytac-Kipergil, E.en_US
dc.contributor.authorArabul, M.U.en_US
dc.contributor.authorErkol H.en_US
dc.contributor.authorAkçaalan, Önderen_US
dc.contributor.authorEldeniz, Y.B.en_US
dc.contributor.authorİlday, F. Ömeren_US
dc.contributor.authorUnlu, M.B.en_US
dc.coverage.spatialSan Francisco, California, United Statesen_US
dc.date.accessioned2016-02-08T12:08:21Z
dc.date.available2016-02-08T12:08:21Z
dc.date.issued2013en_US
dc.identifier.issn1605-7422
dc.identifier.urihttp://hdl.handle.net/11693/28013
dc.descriptionDate of Conference: 3–5 February 2013en_US
dc.descriptionConference name: Proceedings of SPIE,Photons Plus Ultrasound: Imaging and Sensing 2013en_US
dc.description.abstractPhotoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components. © 2013 Copyright SPIE.en_US
dc.language.isoEnglishen_US
dc.source.titleProceedings of SPIE, Progress in Biomedical Optics and Imagingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2004910en_US
dc.subjectAcousto-optic modulatoren_US
dc.subjectData acquisition speeden_US
dc.subjectMechanical perturbationsen_US
dc.subjectMode-lockeden_US
dc.subjectPhoto-acoustic imagingen_US
dc.subjectPhotoacoustic excitationen_US
dc.subjectPulse repetition frequenciesen_US
dc.subjectSuper continuumen_US
dc.subjectDisease controlen_US
dc.subjectDrug therapyen_US
dc.subjectFiber lasersen_US
dc.subjectMode-locked fiber lasersen_US
dc.subjectPhotoacoustic effecten_US
dc.subjectPhotomasksen_US
dc.subjectPhotonic crystal fibersen_US
dc.subjectPhotonsen_US
dc.subjectQ switched lasersen_US
dc.subjectUltrasonicsen_US
dc.subjectPhotoacoustic microscopyen_US
dc.titleA novel fiber laser development for photoacoustic microscopyen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Physicsen_US
dc.citation.volumeNumber8581en_US
dc.identifier.doi10.1117/12.2004910en_US
dc.publisherSPIEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record