Spiral microfluidics device for continuous flow PCR
Author
Salemmilani, Reza
Çetin, Barbaros
Date
2013Source Title
Proceedings of the ASME 2017 Summer Heat Transfer Conference (HT2017)
Publisher
ASME
Volume
2
Language
English
Type
Conference PaperItem Usage Stats
154
views
views
184
downloads
downloads
Abstract
Polymerase-chain-Reaction (PCR) is a thermal cycling (repeated heating and cooling of PCR solution) process for DNA amplification. PCR is the key ingredient in many biomedical applications. One key feature for the success of the PCR is to control the temperature of the solution precisely at the desired temperature levels required for the PCR in a cyclic manner. Microfluidics offers a great advantage over conventional techniques since minute amounts of PCR solution can be heated and cooled with a high rate in a controlled manner. In this study, a microfluidic platform has been proposed for continuous-flow PCR. The microfluidic device consists of a spiral channel on a glass wafer with integrated chromium microheaters. Sub-micron thick microheaters are deposited beneath the micro-channels to facilitate localized heating. The microfluidic device is modeled using COMSOL MultiphysicsR . The fabrication procedure of the device is also discussed and future research directions are addressed. With its compact design, the proposed system can easily be coupled with an integrated microfluidic device to be used in biomedical applications. Copyright © 2013 by ASME.
Keywords
Biomedical applicationsConventional techniques
Fabrication procedure
Future research directions
Integrated microfluidic devices
Micro-fluidic devices
Microfluidic platforms
Microfluidics devices
Fluidic devices
Fuel cells
Heat transfer
Heating equipment
Mass transfer
Medical applications
Microelectromechanical devices
Microfluidics
Sustainable development
Polymerase chain reaction
Permalink
http://hdl.handle.net/11693/27935Published Version (Please cite this version)
http://dx.doi.org/10.1115/HT2013-17305Collections
Related items
Showing items related by title, author, creator and subject.
-
A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing
Guler, M. T.; Bilican, I.; Agan, S.; Elbuken, C. (Institute of Physics Publishing, 2015)In this paper, we present a very simple method to fabricate three-dimensional (3D) microelectrodes integrated with microfluidic devices. We form the electrodes by etching a microwire placed across a microchannel. For precise ... -
3D modeling of on-chip acoustophoretic particle manipulation in a polymer microfluidic device
Çaǧatay, E.; Özer, M. B.; Çetin, Barbaros (Chemical and Biological Microsystems Society, 2016)This study focuses on understanding of the sensitivities of the acoustophoretic process on uncertainties/errors in the geometric properties of the chip material and the piezoelectric actuators. The sensitivity of the ... -
CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving
Serhatlioglu, M.; Ortaç, B.; Elbuken, C.; Bıyıklı, Necmi; Solmaz, M. E. (Institute of Physics Publishing, 2016-10)In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for ...