• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Birleşik sezim ve kestirim sistemlerinin gürültü ile geliştirilmesi

      Thumbnail
      View / Download
      304.5 Kb
      Author
      Akbay, Abdullah Başar
      Gezici, Sinan
      Date
      2014-04
      Source Title
      22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings
      Publisher
      IEEE
      Pages
      1059 - 1062
      Language
      Turkish
      Type
      Conference Paper
      Item Usage Stats
      163
      views
      99
      downloads
      Abstract
      Belirli koşullar altında, optimal olmayan bazı sezici ve kestiricilerin performansını girdilerine gürültü ekleyerek geliştirmek mümkündür. Bu çalışmada, birleşik bir sezim ve kestirim sisteminin gürültü eklenerek geliştirilmesi incelenmektedir. Sistem performansının maksimizasyonu bir optimizasyon problemi olarak tanımlanmaktadır. Optimal toplanır gürültü dağılımının istatiksel özellikleri belirlenmektedir. Sistem performansının gürültü ile iyileştirilemeyeceği bir koşul elde edilmektedir.Önerilen optimizasyon probleminin, bir doğrusal programlama (DP) problemi olarak yaklaşımı sunulmaktadır. Bir sayısal örnek üzerinde, kuramsal bulguları desteklemek amacıyla, gürültü eklenmiş sistem ile orijinal sistemin performansları karşılaştırılmaktadır.
       
      Adding noise to inputs of some suboptimal detectors or estimators can improve their performance under certain conditions. In this study, a noise enhanced joint detection and estimation system is investigated. Maximization of the system performance is defined as an optimization problem. Statistical characterization of the optimal additive noise distribution is determined. A condition under which performance of the system cannot be improved is obtained. The proposed optimization problem is approximated as a linear programming (LP) problem. With an illustrative numerical example, a performance comparison between the noise enhanced system and the original system is performed to support the theoretical analysis. © 2014 IEEE.
      Keywords
      Detection
      Estimation
      Linear programming
      Noise enhanced detection and estimation
      Error detection
      Estimation
      Linear programming
      Numerical methods
      Signal processing
      Joint detection
      Noise distribution
      Noise enhancement
      Noise-enhanced detection
      Optimization problems
      Original systems
      Performance comparison
      Statistical characterization
      Optimization
      Permalink
      http://hdl.handle.net/11693/27853
      Published Version (Please cite this version)
      http://dx.doi.org/10.1109/SIU.2014.6830415
      Collections
      • Department of Electrical and Electronics Engineering 3614
      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Thumbnail

        A multi-modal video analysis approach for car park fire detection 

        Verstockt, S.; Hoecke, S. V.; Beji, T.; Merci, B.; Gouverneur, B.; Çetin, A. Enis; Potter, P. D.; Walle, R. V. D. (Elsevier, 2013)
        In this paper a novel multi-modal flame and smoke detector is proposed for the detection of fire in large open spaces such as car parks. The flame detector is based on the visual and amplitude image of a time-of-flight ...
      • Thumbnail

        Flame detection method in video using covariance descriptors 

        Habiboǧlu, Y.H.; Günay, Osman; Çetin, A. Enis (IEEE, 2011)
        Video fire detection system which uses a spatio-temporal covariance matrix of video data is proposed. This system divides the video into spatio-temporal blocks and computes covariance features extracted from these blocks ...
      • Thumbnail

        VOC gas leak detection using pyro-electric infrared sensors 

        Erden, Fatih; Soyer, E. B.; Toreyin, B. U.; Çetin, A. Enis (IEEE, 2010)
        In this paper, we propose a novel method for detecting and monitoring Volatile Organic Compounds (VOC) gas leaks by using a Pyro-electric (or Passive) Infrared (PIR) sensor whose spectral range intersects with the absorption ...

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy