• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Increasing the sensitivity of the scanning acoustic microscope to anisotropy

      Thumbnail
      View / Download
      319.1 Kb
      Author
      Atalar, Abdullah
      Date
      1987
      Source Title
      Proceedings of the 1987 IEEE Ultrasonics Symposium
      Print ISSN
      0090-5607
      Publisher
      IEEE
      Pages
      791 - 794
      Language
      English
      Type
      Conference Paper
      Item Usage Stats
      254
      views
      132
      downloads
      Abstract
      The response of the scanning acoustic microscope to anisotropic materials is theoretically investigated. For this purpose, the reflection coefficient of plane acoustic waves incident on a liquid-anisotropic-solid interface is calculated. The reflection coefficient depends, in general, on polar and azimuthal angles of incidence. For the acoustic microscope case, a mean reflectance function can be defined which depends only on the polar angle, because there is a circular symmetry. With this mean reflectance function it is possible to explore the effects of changing the lens parameters such as the acoustic field at the back side of the lens. It is found that the response of the scanning acoustic microscope can depend heavily on the orientation of the solid material under investigation, provided that a suitable lens insonification is utilized. The amplitude of the acoustic microscope signal is influenced by the orientation of the material, because there is an interference between the acoustic waves reflected from the material surface at different azimuthal angles. This interference is revealed as a minimum in the mean reflectance function. It is shown by computer simulation that sensitivity to orientation can be increased by use of a ring-shaped transducer in the near field of the acoustic lens. With such lenses, it may be possible to determine the orientation of crystallites in a material.
      Keywords
      Acoustic waves
      Ultrasonic waves
      Anisotropic nisotropic materials
      Liquid-solid interface
      Scanning acousting microscope
      Sound wave reflection
      Microscopes
      Permalink
      http://hdl.handle.net/11693/27839
      Published Version (Please cite this version)
      https://doi.org/10.1109/ULTSYM.1987.199067
      Collections
      • Department of Electrical and Electronics Engineering 3524
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy