• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Coding method for discrete noiseless channels with input constraints

      Thumbnail
      View / Download
      68.6 Kb
      Author
      Arıkan, Erdal
      Date
      1988
      Source Title
      Proceedings of the IEEE International Symposium on Information Theory, ISIT 1988
      Publisher
      IEEE
      Volume
      25
      Issue
      13
      Pages
      20
      Language
      English
      Type
      Conference Paper
      Item Usage Stats
      166
      views
      25
      downloads
      Abstract
      Summary form only given. Two coding algorithms for discrete noiseless channels with input constraints have been analyzed. The first algorithm, which requires infinite-precision arithmetic and is mainly of theoretical interest, can achieve rates as high as channel capacity. The second algorithm is based on the same ideas as the first, but it is much more practical since it uses only finite-precision, floating-point arithmetic. The algorithms are sequential in nature and do not use tables to encode data; as a result, memory requirements are minimal. Experimental results for the finite-precision algorithm have been obtained for the [2, 7] run-length constrained magnetic channel, the charge-constrained channel with a maximum disparity of three, and the telegraphy channel. In the worst of these three cases, encoding at a rate within 0.65% of the capacity was achieved using a precision of only 8 bits. The catastrophic-error-propagation problem was considered, and it was found that, with a slight amendment, the above algorithms can avoid this problem.
      Keywords
      Codes, symbolic encoding
      Catastrophic error propagation problem
      Coding algorithms
      Discrete noiseless channels
      Finite precision algorithm
      Information theory
      Permalink
      http://hdl.handle.net/11693/27838
      Collections
      • Department of Electrical and Electronics Engineering 3525
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy