Automated detection and enhancement of microcalcifications in mammograms using nonlinear subband decomposition
Author
Ansari, R.
Gürcan, M. Nafi
Yardımcı, Yasemin
Çetin, A. Enis
Date
1997Source Title
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, IEEE 1997
Print ISSN
0736-7791
Publisher
IEEE
Pages
3069 - 3072
Language
English
Type
Conference PaperItem Usage Stats
161
views
views
129
downloads
downloads
Abstract
In this paper, computer-aided detection and enhancement of microcalcifications in mammogram images are considered. The mammogram image is first decomposed into subimages using a `subband' decomposition filter bank which uses nonlinear filters. A suitably identified subimage is divided into overlapping square regions in which skewness and kurtosis as measures of the asymmetry and impulsiveness of the distribution are estimated. All regions with high positive skewness and kurtosis are marked as a regions of interest. Next, an outlier labeling method is used to find the locations of microcalcifications in these regions. An enhanced mammogram image is also obtained by emphasizing the microcalcification locations. Linear and nonlinear subband decomposition structures are compared in terms of their effectiveness in finding microcalcificated regions and their computational complexity. Simulation studies based on real mammogram images are presented.
Keywords
Calcification (biochemistry)Computational complexity
Computer simulation
Image enhancement
Image segmentation
Medical imaging
Mammogram images
Microcalcification
Nonlinear subband decomposition
Pattern recognition