• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Hybrid model for probe-fed rectangular microstrip antennas with shorting pins

      Thumbnail
      View / Download
      271.8 Kb
      Author(s)
      Mutlu, Selma
      Aksun, M. İrşadi
      Date
      2000
      Source Title
      Proceedings of the Antennas and Propagation Society International Symposium, IEEE 2000
      Print ISSN
      0272-4693
      Publisher
      IEEE
      Pages
      1448 - 1451
      Language
      English
      Type
      Conference Paper
      Item Usage Stats
      178
      views
      133
      downloads
      Abstract
      For a probe-fed microstrip antenna, it is quite common to employ the cavity model to find the field distribution under the patch and other electrical properties. Therefore, a multiport analysis technique based on the cavity model is usually employed to predict the input impedance of a probe-fed microstrip antenna with shorting pins. However, this approach does not provide any information about the field distribution under the patch with the shorting pins, which is usually used to calculate the radiation properties of the patch antenna. In this study, shorting pins are considered as current sources with unknown amplitudes, and the field distribution under the patch is obtained as a linear superposition of the contributions from each source via cavity model. Then, the unknown current densities over the shorting pins are determined by implementing the boundary condition of the tangential electric field on the pins. This is a hybrid approach because the field distribution is calculated from the cavity model, and the current densities over the shorting pins are obtained from the point matching of the resulting field distributions over the shorting conductors. The input impedance results found from this approach agree extremely well with those obtained from the multiport analysis, which shows that the proposed approach predicts both the input impedance and the field distribution under the patch. In addition, since the feeding probe is also made of PEC, the electric field under the patch should satisfy the boundary condition on this conductor as well. In the application of the cavity model, this is always ignored, with the assumption that the source probe is too thin to affect the field distribution under the patch significantly. In this study, the boundary condition of the electric field is implemented over the source, and its effect on the field distribution, in turn on the resonant frequency, is demonstrated.
      Keywords
      Input impedance
      Probe fed rectangular microstrip antennas
      Shorting pins
      Antenna feeders
      Antenna radiation
      Boundary conditions
      Electric fields
      Electric impedance
      Natural frequencies
      Microstrip antennas
      Permalink
      http://hdl.handle.net/11693/27633
      Published Version (Please cite this version)
      https://doi.org/10.1109/APS.2000.874477
      Collections
      • Department of Electrical and Electronics Engineering 3702
      Show full item record

      Related items

      Showing items related by title, author, creator and subject.

      • Thumbnail

        Three dimensional microfabricated broadband patch and multifunction reconfigurable antennae for 60 GHz applications 

        Hünerli H. V.; Mopidevi, H.; Cağatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Çetiner, B. A.; Bıyıklı, Necmi (IEEE, 2015-04)
        In this paper we present two antenna designs capable of covering the IEEE 802.11ad (WiGig) frequency band (57-66 GHz and 59-66 GHz respectively). The work below reports the design, microfabrication and characterization of ...
      • Thumbnail

        Radiation characteristics of a 2D parabolic reflector antenna excited by the H-polarized complex source 

        Oğuzer, T.; Nosich, A. I.; Altıntaş, Ayhan (IEEE, 2002-09)
        The aim of this paper is to obtain accurate reference data for relatively large and realistic reflector antenna systems. We concentrate on a parabolic reflector antenna in the H-polarization case. The directive primary ...
      • Thumbnail

        A triple-band antenna array for next-generation wireless and satellite-based applications 

        Razzaqi, A. A.; Khawaja, B. A.; Ramzan M.; Zafar, M. J.; Nasir, S. A.; Mustaqim, M.; Tarar, M. A.; Tauqeer, T. (Cambridge University Press, 2016)
        In this paper, a triple-band 1 × 2 and 1 × 4 microstrip patch antenna array for next-generation wireless and satellite-based applications are presented. The targeted frequency bands are 3.6, 5.2 and 6.7 GHz, respectively. ...

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy