Düşme tespiti için sınıflandırma yöntemlerinin karşılaştırılması
Author
Çatalbaş, Bahadır
Yücesoy, Burak
Seçer, G.
Aslan, Murat
Date
2014-04Source Title
22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings
Publisher
IEEE
Pages
1315 - 1318
Language
Turkish
Type
Conference PaperItem Usage Stats
116
views
views
68
downloads
downloads
Abstract
Bu bildiride giyilebilir yapıda olan ve üç boyutlu ölçüm alabilen bir ivmeölçerin çıktılarını kullanarak düşme tespiti yapan farklı algoritmaların karşılaştırılması yapılmıştır. Karşılaştırma amacıyla destek vektör makineleri, yapay sinir ağları ile elde edilen sınıflandırıcılar ve kural bazlı bir sınıflandırıcı kullanılmıştır. Sınıflandırıcıların tasarlanması ve dogrulanması amacıyla 7 farklı denekten üçer defa düşme ve düşme dışındaki günlük aktivitelere ilişkin ivmeölçer verileri toplanmıştır. Yapılan karşılaştırma sonucunda tespit doğruluğu en yüksek algoritmanın %87,76 ile destek vektör makineleri olduğu bulunmuştur. En yüksek düşme tespit oranı da %90,91 ˘ olarak kural bazlı sınıflandırıcı kullanımıyla elde edilmiştir. En yüksek özgüllük oranı %89,47 ile yine destek vektör makineleri ile elde edilmiştir. A comparative study of various fall detection algorithms based upon measurements of a wearable tri-axial accelerometer unit is presented in this paper. Least squares support vector machine, neural network and rule-based classifiers are evaluated in the scope of this paper. Training and testing data sets, which are necessary for design and testing of the classifiers, respectively, are collected from 7 people. Each subject exercised simulated falls and other daily life activities such as walking, sitting etc. Among three methods, support vector machine-based classifier is found to be superior in terms of both correct detection and false alarm ratio as 87,76% precision and 89.47% specifity. Meanwhile, best sensitivity is achieved with rule-based classifiers. © 2014 IEEE.
Keywords
AccelerometerFall detection
Neural networks
Support vector machines
Accelerometers
Algorithms
Neural networks
Signal processing
Classification methods
Comparative studies
Daily life activities
Fall detection
Least squares support vector machines
Rule-based classifier
Training and testing
Triaxial accelerometer
Support vector machines