• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Düşme tespiti için sınıflandırma yöntemlerinin karşılaştırılması

      Thumbnail
      View / Download
      250.8 Kb
      Author
      Çatalbaş, Bahadır
      Yücesoy, Burak
      Seçer, G.
      Aslan, Murat
      Date
      2014-04
      Source Title
      22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings
      Publisher
      IEEE
      Pages
      1315 - 1318
      Language
      Turkish
      Type
      Conference Paper
      Item Usage Stats
      116
      views
      68
      downloads
      Abstract
      Bu bildiride giyilebilir yapıda olan ve üç boyutlu ölçüm alabilen bir ivmeölçerin çıktılarını kullanarak düşme tespiti yapan farklı algoritmaların karşılaştırılması yapılmıştır. Karşılaştırma amacıyla destek vektör makineleri, yapay sinir ağları ile elde edilen sınıflandırıcılar ve kural bazlı bir sınıflandırıcı kullanılmıştır. Sınıflandırıcıların tasarlanması ve dogrulanması amacıyla 7 farklı denekten üçer defa düşme ve düşme dışındaki günlük aktivitelere ilişkin ivmeölçer verileri toplanmıştır. Yapılan karşılaştırma sonucunda tespit doğruluğu en yüksek algoritmanın %87,76 ile destek vektör makineleri olduğu bulunmuştur. En yüksek düşme tespit oranı da %90,91 ˘ olarak kural bazlı sınıflandırıcı kullanımıyla elde edilmiştir. En yüksek özgüllük oranı %89,47 ile yine destek vektör makineleri ile elde edilmiştir.
       
      A comparative study of various fall detection algorithms based upon measurements of a wearable tri-axial accelerometer unit is presented in this paper. Least squares support vector machine, neural network and rule-based classifiers are evaluated in the scope of this paper. Training and testing data sets, which are necessary for design and testing of the classifiers, respectively, are collected from 7 people. Each subject exercised simulated falls and other daily life activities such as walking, sitting etc. Among three methods, support vector machine-based classifier is found to be superior in terms of both correct detection and false alarm ratio as 87,76% precision and 89.47% specifity. Meanwhile, best sensitivity is achieved with rule-based classifiers. © 2014 IEEE.
      Keywords
      Accelerometer
      Fall detection
      Neural networks
      Support vector machines
      Accelerometers
      Algorithms
      Neural networks
      Signal processing
      Classification methods
      Comparative studies
      Daily life activities
      Fall detection
      Least squares support vector machines
      Rule-based classifier
      Training and testing
      Triaxial accelerometer
      Support vector machines
      Permalink
      http://hdl.handle.net/11693/27585
      Published Version (Please cite this version)
      http://dx.doi.org/10.1109/SIU.2014.6830479
      Collections
      • Department of Electrical and Electronics Engineering 3524
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy