Show simple item record

dc.contributor.authorArıkan, Erdalen_US
dc.coverage.spatialYokohama, Japan
dc.date.accessioned2016-02-08T11:55:35Z
dc.date.available2016-02-08T11:55:35Z
dc.date.issued2003-06-07en_US
dc.identifier.urihttp://hdl.handle.net/11693/27521
dc.descriptionDate of Conference: 29 June-4 July 2003
dc.descriptionConference name: IEEE International Symposium on Information Theory, 2003. Proceedings.
dc.description.abstractGrover discovered a quantum algorithm for identifying a target element in an unstructured search universe of N items in approximately 1r/4VN queries to a quantum oracle. For classical search using a classical oracle, the search complexity is of order N /2 queries since on average half of the items must be searched. In work preceding Grover's, Bennett et al. had shown that no quantum algorithm can solve the search problem in fewer than D(VN) queries. Thus, Grover's algorithm has optimal order of complexity. Here, we present an informationtheoretic analysis of Grover's algorithm and show that the square-root speed-up by Grover's algorithm is the best possible by any algorithm using the same quantum oracle.en_US
dc.language.isoEnglishen_US
dc.source.titleIEEE International Symposium on Information Theory, 2003 - Proceedingsen_US
dc.relation.isversionofhttps://doi.org/10.1109/ISIT.2003.1228418
dc.subjectGrover's algorithmen_US
dc.subjectQuantum searchen_US
dc.subjectEntropyen_US
dc.subjectInformation analysisen_US
dc.subjectAlgorithm design and analysisen_US
dc.subjectQuantum computingen_US
dc.subjectPhysics computingen_US
dc.subjectPerformance gainen_US
dc.subjectComputer errorsen_US
dc.subjectError correctionen_US
dc.subjectTime measurement
dc.subjectUpper bound
dc.titleAn information-theoretic analysis of Grover's algorithmen_US
dc.typeConference Paperen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage339en_US
dc.citation.epage347en_US
dc.identifier.doi10.1109/ISIT.2003.1228418
dc.publisherIEEE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record