Parallel-MLFMA solution of CFIE discretized with tens of millions of unknowns
Author
Ergül, Özgür
Gürel, Levent
Date
2007Source Title
Proceedings of the 2nd European Conference on Antennas and Propagation, EuCAP 2007
Publisher
Institution of Engineering and Technology
Volume
2007
Issue
11961
Language
English
Type
Conference PaperItem Usage Stats
164
views
views
109
downloads
downloads
Abstract
We consider the solution of large scattering problems in electromagnetics involving three-dimensional arbitrary geometries with closed surfaces. The problems are formulated accurately with the combined-field integral equation and the resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA on relatively inexpensive computing platforms using distributed-memory architectures, we easily solve large-scale problems that are discretized with tens of millions of unknowns. Accuracy of the solutions is demonstrated on scattering problems involving spheres of various sizes, including a sphere of radius 110 λ discretized with 41,883,638 unknowns, which is the largest integral-equation problem ever solved, to the best of our knowledge. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.
Keywords
Combined-field integral equationElectromagnetic scattering
Largescale problems
Multilevel fast multipole algorithm
Parallelization
Electromagnetic wave scattering
Electromagnetism
Integral equations
Parallel algorithms
Antennas