Engineering particle trajectories in microfluidic flows using speckle light fields

Date
2014
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Proceedings of SPIE
Print ISSN
0277-786X
Electronic ISSN
Publisher
SPIE
Volume
9164
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Optical tweezers have been widely used in physics, chemistry and biology to manipulate and trap microscopic and nanoscopic objects. Current optical trapping techniques rely on carefully engineered setups to manipulate nanoscopic and microscopic objects at the focus of a laser beam. Since the quality of the trapping is strongly dependent on the focus quality, these systems have to be very carefully aligned and optimized, thus limiting their practical applicability in complex environments. One major challenge for current optical manipulation techniques is the light scattering occurring in optically complex media, such as biological tissues, turbid liquids and rough surfaces, which give rise to apparently random light fields known as speckles. Here, we discuss an experimental implementation to perform optical manipulation based on speckles. In particular, we show how to take advantage of the statistical properties of speckle patterns in order to realize a setup based on a multimode optical fiber to perform basic optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these "speckle optical tweezers" will greatly broaden the perspectives of optical manipulation for real-life applications. © 2014 SPIE.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)