• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Synthesis of colloidal 2D / 3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment

      Thumbnail
      View / Download
      7.4 Mb
      Author(s)
      Oztas, T.
      Sen, H. S.
      Durgun, Engin
      Ortaç, B.
      Date
      2014
      Source Title
      Journal of Physical Chemistry C
      Print ISSN
      19327447
      Publisher
      American Chemical Society
      Volume
      118
      Issue
      51
      Pages
      30120 - 30126
      Language
      English
      Type
      Article
      Item Usage Stats
      195
      views
      311
      downloads
      Abstract
      Two-dimensional MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in organic solution (methanol). Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman and UV-vis-near infrared absorption spectroscopy techniques. Results of the structural analysis show that the obtained MoS2 NS mainly present a layered morphology from micrometer to nanometer sized surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown to correlate with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. In Raman spectroscopy, the peaks at 380.33 and 405.79 cm-1 corresponding to the E1 2g and A1g phonon modes of MoS2 were clearly observed. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from the UV region to the NIR region. Investigations of MoS2 NS show that the one-step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of two scaled micrometer- and nanometer-sized layered and fullerene-like morphology MoS2 structures. © 2014 American Chemical Society.
      Keywords
      Ablation
      Absorption spectroscopy
      Calculations
      Crystalline materials
      Permalink
      http://hdl.handle.net/11693/26535
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/jp505858h
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 2260
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the User and Access Services. Phone: (312) 290 1298
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy