Synthesis of colloidal 2D / 3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment

Date
2014
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Journal of Physical Chemistry C
Print ISSN
19327447
Electronic ISSN
Publisher
American Chemical Society
Volume
118
Issue
51
Pages
30120 - 30126
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Two-dimensional MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in organic solution (methanol). Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman and UV-vis-near infrared absorption spectroscopy techniques. Results of the structural analysis show that the obtained MoS2 NS mainly present a layered morphology from micrometer to nanometer sized surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown to correlate with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. In Raman spectroscopy, the peaks at 380.33 and 405.79 cm-1 corresponding to the E1 2g and A1g phonon modes of MoS2 were clearly observed. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from the UV region to the NIR region. Investigations of MoS2 NS show that the one-step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of two scaled micrometer- and nanometer-sized layered and fullerene-like morphology MoS2 structures. © 2014 American Chemical Society.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)