• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Counting molecules with a mobile phone camera using plasmonic enhancement

      Thumbnail
      View / Download
      2.0 Mb
      Author(s)
      Ayas S.
      Cupallari, A.
      Ekiz, O. O.
      Kaya, Y.
      Dana, A.
      Date
      2014
      Source Title
      ACS Photonics
      Print ISSN
      2330-4022
      Publisher
      American Chemical Society
      Volume
      1
      Issue
      1
      Pages
      17 - 26
      Language
      English
      Type
      Article
      Item Usage Stats
      177
      views
      301
      downloads
      Abstract
      Plasmonic field enhancement enables the acquisition of Raman spectra at a single molecule level. Here we investigate the detection of surface enhanced Raman signal using the unmodified image sensor of a smart phone, integrated onto a confocal Raman system. The sensitivity of a contemporary smart phone camera is compared to a photomultiplier and a cooled charge-coupled device. The camera displays a remarkably high sensitivity, enabling the observation of the weak unenhanced Raman scattering signal from a silicon surface, as well as from liquids, such as ethanol. Using high performance wide area plasmonic substrates that enhance the Raman signal 106 to 107 times, blink events typically associated with single molecule motion, are observed on the smart phone camera. Raman spectra can also be collected on the smart phone by converting the camera into a low resolution spectrometer with the inclusion of a collimator and a dispersive optical element in front of the camera. In this way, spectral content of the blink events can be observed on the plasmonic substrate, in real time, at 30 frames per second. (Figure Presented) © 2013 American Chemical Society.
      Permalink
      http://hdl.handle.net/11693/26364
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/ph400108p
      Collections
      • Department of Electrical and Electronics Engineering 4011
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy