Show simple item record

dc.contributor.authorDelale, C.F.en_US
dc.contributor.authorSchnerr G.H.en_US
dc.contributor.authorZierep J.en_US
dc.date.accessioned2016-02-08T10:54:00Z
dc.date.available2016-02-08T10:54:00Z
dc.date.issued1993en_US
dc.identifier.issn0044-2275
dc.identifier.urihttp://hdl.handle.net/11693/26030
dc.description.abstractThe mathematical theory of sub- and supercritical nozzle flows is presented by a unified description of integro-algebraic and differential formulations of the flow equations. The critical amount of heat necessary for a thermally choked flow is defined and models which approximate this critical amount of heat are constructed for nozzle flows with both given internal heat source distributions and nonequilibrium condensation. In particular a cubic equation for an estimate of the limiting condensate mass fraction for shock free condensing flows is derived and a criterion for the existence of supercritical condensing flows based on this estimate is established. The necessary and sufficient conditions for thermal choking are then stated. It is shown that the commonly accepted view, which asserts that the flow Mach number reaches unity at thermal choking (known to be not always true in condensing flows), only exhibits a necessary condition for a thermally choked flow. © 1993 Birkhäuser Verlag.en_US
dc.language.isoEnglishen_US
dc.source.titleZAMP Zeitschrift für angewandte Mathematik und Physiken_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/BF00942759en_US
dc.titleThe mathematical theory of thermal choking in nozzle flowsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage943en_US
dc.citation.epage976en_US
dc.citation.volumeNumber44en_US
dc.citation.issueNumber6en_US
dc.identifier.doi10.1007/BF00942759en_US
dc.publisherBirkhäuser-Verlagen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record