Show simple item record

dc.contributor.authorMorgül, Ö.en_US
dc.date.accessioned2016-02-08T10:53:43Z
dc.date.available2016-02-08T10:53:43Z
dc.date.issued1994en_US
dc.identifier.issn0005-1098
dc.identifier.urihttp://hdl.handle.net/11693/26009
dc.description.abstractWe consider a system described by the one-dimensional linear wave equation in a bounded domain with appropriate boundary conditions. To stabilize the system, we propose a dynamic boundary controller applied at the free end of the system. The transfer function of the proposed controller is restricted to be a positive real function which could be strictly proper. We then show that, if the transfer function of the controller is strictly proper, then the resulting closed-loop system is asymptotically stable, and if proper but not strictly proper, then the resulting closed-loop system is exponentially stable.en_US
dc.language.isoEnglishen_US
dc.source.titleAutomaticaen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/0005-1098(94)90083-3en_US
dc.subjectBoundary value problemsen_US
dc.subjectDistrubuted parameter systemsen_US
dc.subjectLyapunov methodsen_US
dc.subjectPartial differential equationsen_US
dc.subjectStabilityen_US
dc.subjectBoundary conditionsen_US
dc.subjectBoundary value problemsen_US
dc.subjectDistributed parameter control systemsen_US
dc.subjectLyapunov methodsen_US
dc.subjectPartial differential equationsen_US
dc.subjectSystem stabilityen_US
dc.subjectTransfer functionsen_US
dc.subjectDynamic control lawen_US
dc.subjectLinear wave equationen_US
dc.subjectControl system analysisen_US
dc.titleA dynamic control law for the wave equationen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage1785en_US
dc.citation.epage1792en_US
dc.citation.volumeNumber30en_US
dc.citation.issueNumber11en_US
dc.identifier.doi10.1016/0005-1098(94)90083-3en_US
dc.publisherElsevieren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record