Coupled plasmon-phonon mode effects on the Coulomb drag in double-quantum-well systems

Date

1997

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B - Condensed Matter and Materials Physics

Print ISSN

0163-1829

Electronic ISSN

Publisher

American Physical Society

Volume

56

Issue

12

Pages

7535 - 7540

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

We study the Coulomb drag rate for electrons in a double-quantum-well structure taking into account the electron-optical phonon interactions. The full wave vector and frequency dependent random-phase approximation (RPA) at finite temperature is employed to describe the effective interlayer Coulomb interaction. The electron-electron and electron-optical phonon couplings are treated on an equal footing. The electron-phonon mediated interaction contribution is investigated for different layer separations and layer densities. We find that the drag rate at high temperatures (i.e., T≥0.2EF) is dominated by the coupled plasmon-phonon modes of the system. The peak position of the drag rate is shifted to the low temperatures with a slight increase in magnitude, compared to the uncoupled system results in RPA. This behavior is in qualitative agreement with the recent measurements. Including the local-field effects in an approximate way we also estimate the contribution of intralayer correlations.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)