Show simple item record

dc.contributor.authorGoncharov, A.en_US
dc.date.accessioned2016-02-08T10:46:17Z
dc.date.available2016-02-08T10:46:17Z
dc.date.issued1997en_US
dc.identifier.issn0039-3223
dc.identifier.urihttp://hdl.handle.net/11693/25528
dc.description.abstractWe prove that generalized Cantor sets of class α, α ≠ 2, have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.en_US
dc.language.isoEnglishen_US
dc.source.titleStudia Mathematicaen_US
dc.titlePerfect sets of finite class without the extension propertyen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage161en_US
dc.citation.epage170en_US
dc.citation.volumeNumber126en_US
dc.citation.issueNumber2en_US
dc.publisherPolish Academy of Sciences, Institute of Mathematicsen_US
dc.identifier.eissn1730-6337


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record