On the Titchmarsh convolution theorem
Date
2000
Authors
Gergün, S.
Ostrovskii, I.
Ulanovskii, A.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
1
views
views
33
downloads
downloads
Citation Stats
Series
Abstract
Let M be the set of all finite complex-valued Borel measures μ≢0 on ℝ. Set ℓ(μ) inf(supp μ). The classical Titchmarsh convolution theorem claims that if: (i) μj ∈ M, (ii) ℓ(μj) > - ∞, j = 1,. . . , n, then ℓ(μ1) + ⋯ + ℓ(μn) = ℓ(μ1 * ⋯ * μn). The condition (ii) cannot be omitted. In 80's, it had been shown that (ii) can be replaced with sufficiently rapid decay of the measures μj at - ∞ and the best possible condition of this form had been found. We show that the last condition can be weakened if we dealing with linearly dependent measures μj, and find the best possible condition in this case. © 2000 Académie des ciences/Éditions scientifiques et médicales Elsevier SAS.
Source Title
Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
Publisher
Elsevier
Course
Other identifiers
Book Title
Keywords
Degree Discipline
Degree Level
Degree Name
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
French
English
English