Show simple item record

dc.contributor.authorÖzgüler, A. B.en_US
dc.date.accessioned2016-02-08T10:37:41Z
dc.date.available2016-02-08T10:37:41Z
dc.date.issued2000en_US
dc.identifier.issn0018-9286
dc.identifier.urihttp://hdl.handle.net/11693/25014
dc.description.abstractThe constructions of convex directions based on phase-derivative interpretations were obtained for Hurwitz-stable polynomials. The phase-derivative conditions were based on the sensitivity of root-locus associated with the even and odd parts of a polynomial. The phase-growth condition directly established anti-Hurwitz polynomials, polynomials of degree one, even polynomials and odd polynomials for the entire set of Hurwitz polynomials.en_US
dc.language.isoEnglishen_US
dc.source.titleIEEE Transactions on Automatic Controlen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/9.871774en_US
dc.subjectBoundary conditionsen_US
dc.subjectMathematical modelsen_US
dc.subjectStabilityen_US
dc.subjectTheorem provingen_US
dc.subjectConvex directionen_US
dc.subjectHermite biehler theoremen_US
dc.subjectHurwitz stable polynomialsen_US
dc.subjectRobust controlen_US
dc.subjectPolynomialsen_US
dc.titleConstructing convex directions for stable polynomialsen_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage1565en_US
dc.citation.epage1569en_US
dc.citation.volumeNumber45en_US
dc.citation.issueNumber8en_US
dc.identifier.doi10.1109/9.871774en_US
dc.publisherIEEEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record