Show simple item record

dc.contributor.authorKlyachko, A.A.en_US
dc.date.accessioned2016-02-08T10:37:09Z
dc.date.available2016-02-08T10:37:09Z
dc.date.issued2000en_US
dc.identifier.issn243795
dc.identifier.urihttp://hdl.handle.net/11693/24979
dc.description.abstractUsing harmonic analysis on symmetric spaces we reduce the singular spectral problem for products of matrices to the recently solved spectral problem for sums of Hermitian matrices. This proves R.C. Thompson's conjecture [Matrix Spectral Inequalities, Johns Hopkins University Press, Baltimore, MD, 1988]. © 2000 Elsevier Science Inc.en_US
dc.language.isoEnglishen_US
dc.source.titleLinear Algebra and Its Applicationsen_US
dc.subjectEigenvaluesen_US
dc.subjectRandom walksen_US
dc.subjectSingular valuesen_US
dc.subjectSpherical functionsen_US
dc.titleRandom walks on symmetric spaces and inequalities for matrix spectraen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage37en_US
dc.citation.epage59en_US
dc.citation.volumeNumber319en_US
dc.citation.issueNumber1-3en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record