Simulations of ground-penetrating radars over lossy and heterogeneous grounds
Date
2001Source Title
IEEE Transactions on Geoscience and Remote Sensing
Print ISSN
0196-2892
Publisher
IEEE
Volume
39
Issue
6
Pages
1190 - 1197
Language
English
Type
ArticleItem Usage Stats
208
views
views
254
downloads
downloads
Abstract
The versatility of the three-dimensional (3-D) finite-difference time-domain (FDTD) method to model arbitrarily inhomogeneous geometries is exploited to simulate realistic groundpenetrating radar (GPR) scenarios for the purpose of assisting the subsequent designs of high-performance GPR hardware and software. The buried targets are modeled by conducting and dielectric prisms and disks. The ground model is implemented as lossy with surface roughness, and containing numerous inhomogeneities of arbitrary permittivities, conductivities, sizes, and locations. The impact of such an inhomogeneous ground model on the GPR signal is demonstrated. A simple detection algorithm is introduced and used to process these GPR signals. In addition to the transmitting and receiving antennas, the GPR unit is modeled with conducting and absorbing shield walls, which are employed to reduce the direct coupling to the receiver. Perfectly matched layer absorbing boundary condition is used for both simulating the physical absorbers inside the FDTD computational domain and terminating the lossy and layered background medium at the borders.
Keywords
Finite-difference time-domain (FDTD)Ground-penetrating radar (GPR)
Subsurface scattering
Heterogeneous grounds
Shield walls
Algorithms
Computer hardware
Computer simulation
Computer software
Dielectric materials
Electric conductivity
Finite difference method
Permittivity
Radar target recognition
Receiving antennas
Surface roughness
Time domain analysis
Transceivers
Ground penetrating radar systems
Permalink
http://hdl.handle.net/11693/24857Published Version (Please cite this version)
http://dx.doi.org/10.1109/36.927440Collections
Related items
Showing items related by title, author, creator and subject.
-
Frequency responses of ground-penetrating radars operating over highly lossy grounds
Oğuz, U.; Gürel, Levent (IEEE, 2002)The finite-difference time-domain (FDTD) method is used to investigate the effects of highly lossy grounds and the frequency-band selection on ground-penetrating-radar (GPR) signals. The ground is modeled as a heterogeneous ... -
A condition for the uniqueness of Gibbs states in one-dimensional models
Kerimov, A. (Elsevier BV * North-Holland, 1998)Uniqueness of limit Gibbs states of one dimensional models with a unique "stable" ground state is established at low temperatures. © 1998 Elsevier Science B.V. All rights reserved. -
Modeling of ground-penetrating-radar antennas with shields and simulated absorbers
Oğuz, U.; Gürel, Levent (IEEE, 2001)A three-dimensional (3-D) finite-difference time domain (FDTD) scheme is employed to simulate ground-penetrating radars. Conducting shield walls and absorbers are used to reduce the direct coupling to the receiver. Perfectly ...