Show simple item record

dc.contributor.authorBarker, L.en_US
dc.date.accessioned2016-02-08T10:35:17Z
dc.date.available2016-02-08T10:35:17Z
dc.date.issued2001en_US
dc.identifier.issn0305-4470
dc.identifier.urihttp://hdl.handle.net/11693/24851
dc.description.abstractIn this second of four papers on the eponymous topic, pointwise convergence of a 'discrete' state function to a 'continuum' state function is shown to imply the algebraic criterion for convergence that was introduced in the prequel. As examples (and as a prerequisite for the sequels), the normal approximation theorem and the convergence of the Kravchuk functions to the Hermite-Gaussians are expressed in terms of the algebraic notion of convergence.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Physics A: Mathematical and Generalen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0305-4470/34/22/308en_US
dc.titleContinuum quantum systems as limits of discrete quantum systems: II. State functionsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage4673en_US
dc.citation.epage4682en_US
dc.citation.volumeNumber34en_US
dc.citation.issueNumber22en_US
dc.identifier.doi10.1088/0305-4470/34/22/308en_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.identifier.eissn1361-6447


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record