Show simple item record

dc.contributor.authorKulik, I. O.en_US
dc.date.accessioned2016-02-08T10:34:44Z
dc.date.available2016-02-08T10:34:44Z
dc.date.issued2001en_US
dc.identifier.issn0132-6414
dc.identifier.urihttp://hdl.handle.net/11693/24812
dc.description.abstractWe show with a direct numerical analysis that a dilute Bose gas in an external potential - which is choosen for simplicity as a radial parabolic well - undergoes at certain temperature Tc a phase transition to a state supporting macroscopic fraction of particles at the origin of the phase space (r = 0, p = 0). Quantization of particle motion in a well wipes out sharp transition but supports a distribution of radial particle density p(r) peacked at r = 0 (a real-space condensate) as well as the phase-space Wigner distribution density W(r, p) peaked at r = 0 and p = 0 below the crossover temperature Tc* of order of Tc. Fixed-particle-number canonical ensemble which is a combination of the fixed-N condensate part and the fixed-μ excitation part is suggested to resolve the difficulty of large fluctuation of the particle number (δN ∼ N) in the Bose-Einstein condensation problem treated within the orthodox grand canonical ensemble formalism.en_US
dc.language.isoEnglishen_US
dc.source.titleFizika Nizkikh Temperatur (Kharkov)en_US
dc.subjectCondensationen_US
dc.subjectLiquefaction of gasesen_US
dc.subjectLow temperature effectsen_US
dc.subjectNumerical analysisen_US
dc.subjectParticle size analysisen_US
dc.subjectProbability distributionsen_US
dc.subjectBose gasesen_US
dc.subjectGasesen_US
dc.titleReal-space condensation in a dilute Bose gas at low temperatureen_US
dc.typeArticleen_US
dc.departmentDepartment of Physics
dc.citation.spage1179en_US
dc.citation.epage1182en_US
dc.citation.volumeNumber27en_US
dc.citation.issueNumber9-10en_US
dc.publisherNatsional'na Akademiya Nauk Ukrainyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record