Show simple item record

dc.contributor.authorMorgül, Ö.en_US
dc.date.accessioned2016-02-08T10:34:17Z
dc.date.available2016-02-08T10:34:17Z
dc.date.issued2001en_US
dc.identifier.issn0018-9286
dc.identifier.urihttp://hdl.handle.net/11693/24781
dc.description.abstractWe consider a system described by the Euler-Bernoulli beam equation. For stabilization, we propose a dynamic boundary controller applied at the free end of the system. The transfer function of the controller is a marginally stable positive real function which may contain poles on the imaginary axis. We then give various asymptotical and exponential stability results. We also consider the disturbance rejection problem.en_US
dc.language.isoEnglishen_US
dc.source.titleIEEE Transactions on Automatic Controlen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/9.975475en_US
dc.subjectBoundary control systemsen_US
dc.subjectDistributed parameter systemsen_US
dc.subjectDisturbance rejectionen_US
dc.subjectFlexible structuresen_US
dc.subjectSemigroup theoryen_US
dc.subjectStabilityen_US
dc.subjectAsymptotic stabilityen_US
dc.subjectFlexible structuresen_US
dc.subjectPartial differential equationsen_US
dc.subjectTransfer functionsen_US
dc.subjectBeam equationsen_US
dc.subjectDistributed parameter control systemsen_US
dc.titleStabilization and disturbance rejection for the beam equationen_US
dc.typeArticleen_US
dc.departmentDepartment of Computer Engineering
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage1913en_US
dc.citation.epage1918en_US
dc.citation.volumeNumber46en_US
dc.citation.issueNumber12en_US
dc.identifier.doi10.1109/9.975475en_US
dc.publisherIEEEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record