Show simple item record

dc.contributor.authorAnisimov, V. V.en_US
dc.date.accessioned2016-02-08T10:31:25Z
dc.date.available2016-02-08T10:31:25Z
dc.date.issued2002en_US
dc.identifier.issn0257-0130
dc.identifier.urihttp://hdl.handle.net/11693/24584
dc.description.abstractThe asymptotic behavior of a queueing process in overloaded state-dependent queueing models (systems and networks) of a switching structure is investigated. A new approach to study fluid and diffusion approximation type theorems (without reflection) in transient and quasi-stationary regimes is suggested. The approach is based on functional limit theorems of averaging principle and diffusion approximation types for so-called Switching processes. Some classes of state-dependent Markov and non-Markov overloaded queueing systems and networks with different types of calls, batch arrival and service, unreliable servers, networks (MSM,Q/MSM,Q/1/∞)r switched by a semi-Markov environment and state-dependent polling systems are considered.en_US
dc.language.isoEnglishen_US
dc.source.titleQueueing Systemsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1023/A:1014371517599en_US
dc.subjectAveraging principleen_US
dc.subjectDiffusion approximationen_US
dc.subjectFluid limiten_US
dc.subjectMarkov processen_US
dc.subjectNetworksen_US
dc.subjectQueueing systemsen_US
dc.subjectSemi-Markov processen_US
dc.subjectSwitching processen_US
dc.titleDiffusion approximation in overloaded switching queueing modelsen_US
dc.typeArticleen_US
dc.citation.spage143en_US
dc.citation.epage182en_US
dc.citation.volumeNumber40en_US
dc.citation.issueNumber2en_US
dc.identifier.doi10.1023/A:1014371517599en_US
dc.publisherSpringeren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record