Spectroscopic investigation of nitrate-metal and metal-surfactant interactions in the solid AgNO3/C12EO10 and liquid-crystalline [M(H2O)n](NO3)2/C12EO10 systems

Date
2003
Authors
Dag, Ö.
Samarskaya, O.
Tura, C.
Günay, A.
Çelik, Ö.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Langmuir
Print ISSN
0743-7463
Electronic ISSN
Publisher
American Chemical Society
Volume
19
Issue
9
Pages
3671 - 3676
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Interactions of the nitrate ions in various metal nitrate salts with CnH2n-1(CH2CH2O)mOH (CnEOm)-type nonionic surfactants have been investigated both in the solid and in the liquid-crystalline (LC) systems. In the ternary system, the mixture of salt/water/CnEOm has a mesophase up to a certain concentration of salt, and the nitrate ions in this phase are usually in a free-ion form. However, upon the evaporation of the water phase, the nitrate ion interacts with the metal center and coordinates as either a bidentate or unidentate ligand. It is this interaction that makes the AgNO3 ternary system undergo a phase separation by releasing solid Ag(CnEOm)xNO3 complex crystals. In contrast, the salt/surfactant systems maintain their stable LC phases for months. Note also that the salt/surfactant systems consist of transition-metal aqua complexes in which the coordinated water molecules play a significant role in the self-assembly and organization of the nonionic surfactant molecules into an LC mesophase. Throughout this work, Fourier transform infrared spectroscopy has been extensively used to investigate the interactions of the nitrate ions with a metal center and the metal ions with the surfactant molecules. Polarized optical microscopy and X-ray diffraction techniques have been applied to investigate the nature of the crystalline and LC phases.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)