• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Lyotropic liquid-crystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesostructured cadmium sulfide

      Thumbnail
      View / Download
      515.4 Kb
      Author(s)
      Dag, Ö.
      Alayoǧlu, S.
      Tura, C.
      Çelik, Ö.
      Date
      2003
      Source Title
      Chemistry of Materials
      Print ISSN
      0897-4756
      Publisher
      American Chemical Society
      Volume
      15
      Issue
      14
      Pages
      2711 - 2717
      Language
      English
      Type
      Article
      Item Usage Stats
      222
      views
      269
      downloads
      Abstract
      Lyotropic liquid-crystalline (LLC), transition metal salt: oligo(ethylene oxide) nonionic surfactant (CnH2n+1(CH2CH2O)mOH, denoted as CnEOm), systems have been studied by means of diffraction, microscopy, and spectroscopy to elucidate the structural, thermal, and templating properties. In the system, the lyotropic salts of transition metal aqua complexes, such as chlorides and sulfates, are insoluble and do not form a LC phase in CnEOm-type nonionic surfactants. However, the transition metal aqua complexes of nitrates and perchlorates are soluble and form 2D and 3D hexagonal and cubic mesophases. These phases are stable in a very broad range of salt:surfactant mole ratios (1.0 and 3.6). The nitrate salts form a hexagonal mesophase. However, in high nitrate salt concentrations (above 3.2 salt:surfactant mole ratio), the salt crystals are either insoluble or the salt:surfactant mixtures are in a cubic mesophase. The structure and thermal properties of the new system are determined by the solubility of the transition metal salts, the concentration of the salt, and the surfactant type. The LC [Cd(H2O)4](NO3)2: C12EO10 mesophase has been reacted with H2S gas to produce solid mesostructured CdS (meso-CdS). The meso-CdS particles are spherical in morphology and are made up of hierarchical organization of 2-4-nm CdS particles. The salt:surfactant LLC systems and the solid meso-CdS have been investigated using polarized optical microscopy, X-ray diffraction, Fourier transform infrared, Fourier transform Raman, and UV-vis absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy.
      Keywords
      Transition metal salts
      Diffraction
      Fourier transform infrared spectroscopy
      Morphology
      Optical microscopy
      Surface active agents
      Transition metals
      Ultraviolet spectroscopy
      X ray diffraction analysis
      Liquid crystals
      Permalink
      http://hdl.handle.net/11693/24455
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/cm0341538
      Collections
      • Department of Chemistry 707
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy