Analysis of finite arrays of axially directed printed dipoles on electrically large circular cylinders

Date
2004
Authors
Ertürk, V. B.
Rojas, R. G.
Lee, K. W.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Antennas and Propagation
Print ISSN
0018-926X
Electronic ISSN
Publisher
IEEE
Volume
52
Issue
10
Pages
2586 - 2595
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Various arrays consisting of finite number of printed dipoles on electrically large dielectric coated circular cylinders are investigated using a hybrid method of moments/Green's function technique in the spatial domain. This is basically an "element by element" approach in which the mutual coupling between dipoles through space as well as surface waves is incorporated. The efficiency of the method comes from the computation of the Green's function, where three types of spatial domain Green's function representations are used interchangeably, based on their computational efficiency and regions where they remain accurate. Numerical results are presented in the form of array current distributions, active reflection coefficient and far-field pattern to indicate the efficiency and accuracy of the method. Furthermore, these results are compared with similar results obtained from finite arrays of printed dipoles on grounded planar dielectric slabs. It is shown that planar approximations, except for small separations, can not be used due to the mutual coupling between the array elements. Consequently, basic performance metrics of printed dipole arrays on coated cylinders show significant discrepancies when compared to their planar counterparts. © 2004 IEEE.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)